Quantum Institute Workshop

Quantum Institute Briefing Center; December 9-10, 2002

Quantum Degenerate Matter

Xinxin Zhao, Jinwei Wu, Marc Hausmann, Roberto Onofrio, Eric Burt and David Vieira

MOTIVATION

- Use Feshbach
 resonance to control
 atom-atom interaction > increase critical
 temperature (T_c) for
 Cooper pairing
 transition to superfluid
 state
- Observe Josephson-like oscillations between atomic (fermionic) and molecular (bosonic) population
- Test BCS theory in weak interaction limit

LANL BEC

84Rb - 87Rb SYSTEM

- Sympathetic cool radioactive 84Rb (t_{1/2}=33 d) fermions with 87Rb BEC
- Good collision properties calculated for ⁸⁴Rb - ⁸⁷Rb a_S = 117 (a.u.), a_T = 550 (a.u.)
- Feshbach resonance predicted at ~100 Gauss for ⁸⁴Rb (5/2, 5/2) and (5/2, 3/2) states (Burke and Bohn, PRA <u>59</u>, 1303 (1999))
- Mixtures of ⁸⁴Rb ⁸⁷Rb already trapped (S.G. Crane *et al.*, PRA <u>62</u>, 011402R (2000))
- 87Rb recently cooled to BEC @
 50 nK in a TOP magnetic trap

Quantum Entanglement of Atoms in an Optical Lattice

Jinwei Wu, Michael Di Rosa, Marc Hausmann, David Vieira and Xinxin Zhao

- Entangle m-states in the ground hyperfine manifold (long coherence times ~10s possible)
- Now setting up a CO₂ optical lattice (lattice spacing 5 mm) (individual addressing and fluorescence readout)
- Transfer atoms to another lattice formed by Ti:S laser to do spin-spin entanglement (1 s EPR entanglement rate)
- Feshbach resonance can also be used for faster spin entanglement (10-100 ms entanglement rate)
- Study decoherence effects, multi-quantal entanglement, quantum gates, etc.